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CALCULATION OF THE NONEQUILIBRIUM PARAMETERS OF AIR 

AT THE SURFACES OF MODELS AND IN THE WAKES BEHIND THEM 

FOR THE CONDITIONS OF AEROBALLISTIC EXPERIMENTS 

I. G. Eremeitsev and N. N. Pilyugin UDC 629.7.018.3 

The calculation of the nonequilibrium, quasi-one-dimensional flow of chemically reactive 
gas mixtures is of practical interest in connection with the study of relaxation processes, 
obtaining gasdynamic jets for physical measurements, and the investigation of plasma super- 
sonic phenomena in the wake behind a body, etc. 

Calculations of chemically nonequilibrium, supersonic, quasi-one-dimensional flows are 
presented in [1-8] and elsewhere. Here various algorithms are used to solve such problems 
for flows in nozzles and stream tubes near a body. At present the fields of nonequilibrium 
parameters at the surfaces of spherically blunted cones are calculated for certain conditions 
of streamline flow using stream tubes, while calculated results for inviscid flow in wakes 
are absent. In expansion behind the stern cut of a body, where the gas temperature is sharp- 
ly reduced, it is necessary to make additional allowance for important reactions with the 
participation of electrons, negative ions, and polyatomic molecules. Calculations of non- 
equilibrium parameters in the flow over bodies with surfaces of other shapes, in a wide range 
of variation of the initial parameters, are also necessary for the comparison and treatment 
of the results of aeroballistic experiments. However, the absence of calculation methods 
that are convenient and rapid for execution on computers has prevented making such comparative 
investigations and giving practical recommendations up to now. 

The problem of the flow of a chemically nonequilibrium, partially ionized, multicompon- 
ent, inviscid gas from a spherical supersonic source was studied in detail in [9]; from the 
calculations it is seen that in a number of important cases one can use a constant value of 
the effective adiabatic index, making it possible to obtain a one-to-one connection between 
the area of a stream tube and the gas pressure. 

In the present paper we give a single algorithm for the computer calculation of the direct 
and inverse quasi-one-dimensional problems of the flow of chemically nonequilibrium, multicom- 
ponent air. The formulation and ways of solving a number of problems of nonequilibrium aero- 
dynamics are discussed on the basis of the calculation method developed. 

i. Let us consider the steady quasi-one-dimensional flow of a chemically nonequilib- 
rium gas. The system of dimensionless equations describing such flow has the form [i] 

dv dp (i.i) pvS(x)  = i, pv-h-~= d~' 

Moscow. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 2, 
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dc i 
~ x ( h + v 2 ) = 0 ,  pv-j~-z = W  ~, ~ = 1 , 2  . . . . .  N,~ ( 1 . 1 )  

h =  E c i h i  = ~ - ~ c i / j ' % i d T + h ~  , c i = P i / 9 ,  ] i = l  i = l  \ O  

N N 

p = p T m ,  m-"-/' c i = t ,  [Xi] = m'-~ p'~ 
i = 1  i = l  

N N 

W i  = l,.. ra i l i ,  ai~Xi ~ Y~ b i jX i ,  ] = 1, 2, . .  N~,: 
p,v, bj i=1 i = l  

I i = ~ (bo - -  aij) kl j  [Xh] %j - -  kbj [Xh] bhj . 
./=1 = 

2 Here s,S is the area of a stream tube; s longitudinal coordinate; v,v, 0,P, p,v, p, 
(m,v,2/RA)/T,(v,2/2)h, gas velocity, density, pressure, temperature, and enthalpy; ci and mi, 
mass concentration and molecular weight of the i-th component; N, number of chemical compo- 
nents; RA, universal gas constant; Wi, rate of formation of the i-th component as a result of 
chemical reactions and ionization; Nr, number of reactions; kfj and kbj, constants of the for- 
ward and back chemical reactions; aij and bij, stoichiometric coefficients; [Xi], molar- 
volumetric concentration of the i-th component; cpiRA/2m, heat capacity of the i-th component 
at constant pressure; (v,2/2)hi ~ specific enthalpy of formation of the i-th component; the 
characteristic dimensional quantities of the given problem are marked by an asterisk. To 
close the system (i.i) in the direct problem, the shape of a stream tube, i.e., the depend- 
ence of the cross-sectional area S on the longitudinal coordinate x, is assigned, while the 
variation of the pressure p with respect to x is assigned in the inverse problem. 

In Eqs. (i.i) we convert from the longitudinal coordinate x to the coordinate r of expan- 
sion of a stream tube by substituting r = for S(x). 

Then we write the system (i.i) as 

dv dp d (h + v 2) = O, ( 1 . 2 )  pvr2 = t ,  pV-~r = dr ' . d r  

N lVr d?i 
p = D T X ? ~ ,  p v - 7 ~ - = X v i j F ~ j , :  i = l , 2 ,  . . , ;N ,  

i=l 3=1 

C i 

r 2 ( * P * -  2 | ~ b j P  for ternary reactiom. 
r j  = / v-m* 

r,p,  7..^ for binary reactions. 
[ v,m---7 ~b~v 

w h e r e  r ,  = f ( r ) s  f ( r )  = d x / d r .  Fo r  f ( r )  = 1,  t h e  s y s t e m  ( 1 . 2 )  c o i n c i d e s  i d e n t i c a l l y  w i t h  
t h e  e q u a t i o n s  d e s c r i b i n g  n o n e q u i l i b r i u m  g a s  f l o w  f r o m  a s p h e r i c a l  s o u r c e  o f  r a d i u s  r e = s  
[9]. 

As a r e s u l t  o f  s o l v i n g  ( 1 . 2 )  w i t h  t h e  a p p r o p r i a t e  i n i t i a l  c o n d i t i o n s ,  a l l  t h e  p a r a m e t e r s  
a r e  o b t a i n e d  i n  t h e  f o r m  o f  f u n c t i o n s  o f  r .  To c o n v e r t  t o  t h e  o r i g i n a l  x c o o r d i n a t e ,  we m u s t  
e s t a b l i s h  a o n e - t o - o n e  c o r r e s p o n d e n c e  b e t w e e n  x and r .  I n  t h e  d i r e c t  p r o b l e m  i t  i s  e s t a b -  
l i s h e d  d i r e c t l y  f r o m  t h e  r e l a t i o n  S ( x )  = r 2. I n  t h i s  c a s e  f i s  e a s i l y  c a l c u l a t e d :  f = 
2 r d x / d S .  

I n  t h e  i n v e r s e  p r o b l e m  one  a s s i g n s  t h e  p r e s s u r e  p r o f i l e  p ( x ) ,  w h i l e  t h e  f u n c t i o n  S ( x )  
c an  be  c a l c u l a t e d  a f t e r  t h e  e n t i r e  p r o b l e m  i s  s o l v e d .  The s o l u t i o n  o f  t h e  i n v e r s e  p r o b l e m  
can be obtained by solving the equivalent direct problem of flow from a source with a vari- 
able radius r,(r). For this purpose the system (1.2) is solved numerically, while the cor- 
respondence between r and x is found from the resulting distribution p(r) from the relation 

p (x) p (r) ' * 2 
, = ? a M , p ( r ) .  ( 1 . 3 )  

Po P* 
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In (1.3), 7*ef, P,, and M, are the effective adiabatic index [i], the pressure, and the Mach 
number at the surface of the source r = 1; P0' is the pressure at the critical point of the 
body. From (1.3) we get 

* 2 dx dp 
/ (r) = ?erM, dp. d r '  

where dp/dx is assigned while dp/dr is found from the solution of (1.2). In the particular 
case when ~ef(r) = const, one can determine dp/dr on the basis of isentropic equations [9]: 

dp (r) 
dr 

2 ? e f p  ( r )  r 4 
7 ' [?e,MIP (r)] 'e< _ l 

In the general case, the derivative dp/dr must be calculated numerically together with the 
solution of Eqs. (1.2). The pressure distribution at the surface of a blunt axisymmetric 
body can be obtained either on the basis of the numerical solutions tabulated in [i0] or from 
a modified Newton's equation [ii]. The pressure distribution over the surface of a sphere 
is found with high accuracy from the equation [ii] 

P =  t - -  1,17 sin2 0 + 0,225 sin~O, 0 = - ~  --cx~ ( 1 . 4 )  
Po 

Here ~, Moo, and p~ are the ratio of heat capacities, Mach number, and density in the oncom- 
ing gas stream; a is the angle between the normal to the body and the horizontal axis. The 
pressure distribution along the axis of the wake can be found by analogy with a strong cy- 
lindrical explosion [11, 12]. 

If we use this equation from [12] and compare it with Eq. (1.4) for e = ~/2 and x' = 
R, where R is the radius of the sphere, then in the wake behind the sphere we have 

--P =i+ (1.5) P= + 4 ) / R  , " v = 

, V - c ' ~  
V 2- '~  % k~.(,O - ~ -  1, "~k~ (V)---- -~"~-~ ,,~ 

where Cx is the drag coefficient of the body. 

As was shown in [13], smoothing of the pressure in a base region of small size has a 
weak influence on the solution in the wake. Similar expressions for p(x) can also be obtained 

for other bodies. 

Eliminating the pressure from the momentum and energy equations using the equation of 
state, and converting to the new independent variable z = r -I and the integration variable 

v, we finally find 

,N/. 

az r aT @ 3 a~,~ d r Z vi~r~i~j, i = t~ 2 , . . . ,  N,~ 
d"7 - @ '  a--7- = ,v---~-, ev  = ~,,* a,~ " ( 1 . 6 )  

,i=1 

[ I 1 d" I 

I:IE) 2 2 - -  N -1 ~ i  - ' ~  H i  ~ - -  '~ ~i ~ ' " "~* ' 

i , = l  
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Fig. 1 Fig. 2 

Initial conditions to the system (1.6): 

(1.6) 

v = t , z  = t ,  T = T , R A m ~ v ~ 2 ,  yi = y ~ , , ~  = 1 , 2 , . . . ,  N .  

2. The equations are integrated in the restricted region 0 < z ~ 1 by the transforma- 
tion of coordinates z = r -I. A method of solving the equations analogous to that of [5, 9] 
was used, making it possible to calculate, by a single implicit-difference scheme with a high 
accuracy and a sufficiently large step, regions of flow both nearly equilibrium and essential- 
ly nonequilibrium. 

The system of differential equations (1.6) was replaced by the difference equations 

71 ,m+l - -  Yi,m = sWi,m-i-1 (~)2,m+l ( i - -  s) Wi,  m dA)2,ra 
Av 2 2 @ '; Ym+ lzm+ l (])l,m+l V mZ m 1,m 

Nr 

Wi,m = ~ v i i r j , ~ j . m ,  i = l ,  2 . . . . .  N r ,  
j=l 

03,m Zm+i -- Zra (I)2,m+l (I)2, m r ~ + ~  - -  rm e3'~"+~ + ( t  - -  s)  = s + ( i  - -  s)  ~.-5-A--': 
AV = 8 (i)l,rn+----- ~ q)l,m " Av ~ l , m + l  l,m 

(2.1) 

where 0 5 s 5 i; 5v is the step of integration; m is the number of nodes of the calculation 
grid; s is a weight factor; NL is the number of products of independent reactions. In the 
calculations we took s = 0.6 and Av = 10 -3 The entire system of nonlinear equations was 
solved by Newton's method through a standard program. 

We analyzed air consisting of 18 components, O, N, e, 02, N2, NO, NO + , 02 + , N2 +, 0 +, 
N +, 02-, 0-, NO2, 03, N20 , NO2- , 0 s- between which 72 reactions occur. The system of prin- 
cipal chemical reactions was taken in accordance with the recommendations of [I, 3, 8, 9, 
14] and is presented in Table i, where the rate constants of the reactions are given in the 
form k =a "10nT b exp (-C/T), the temperature is given in degrees Kelvin, the dimensionality 
of the reaction rate constants is (cm3/mole)q-l'sec -I (q is the order of the reaction), and 
the indices f and b denote the forward and back reactions, respectively. The required equi- 
librium constants and thermodynamic properties are taken from [14, 15]. 

3. The calculations of distributions of the nonequilibrium parameters of air by the 
above method were compared with the results of [2-7], obtained by the method of stream tubes, 
for both the direct and the inverse problems. 

In Fig. 1 we present the distribution of concentrations of the components in the expansion 
of air in a hypersonic nozzle for T, = i0,000 K, p, = 5.35.107 Pa, and r, = 1 cm (lines) from 
[3]. The shape of the nozzle was assigned in the form 

S / S ,  = i + (x /r , )  ~, r ,  = l , / t g  0 
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TABLE i 

Reactions 

cf 
h/=a[lon/Tl[e T 

Cb 
kb=abtOnbT~be T 

6 
7 
8 
9 

10 
t l  
t2 
t3 
t4 
t5 
t6 
t7 
t8 
t9 

20 

2t 

22 

23 

24 

25 

26 

27 
28 

29 

30 

3t, 

32 

33 

34 

35 

36 
37 
38 
39 
40 

41 

42 
43 
44 
45 
46 
47 

48 

0 = +  02 ~- O +  O +  02 
0 = + 0 ~ 0 + 0 + 0  

0 = +  N , , ~  O +  O + N o  
0 2 + N ~ O + O + N  

0 ~ +  NO ~ 0 + O +  NO 
. N , ~ + O i ~ ' N + N + 0 2  
No. + N~ ~ N + N + N2 
N2-+- 0 ~. N + N + 0 
N ~ + N ~ N + N + N  

N 2 + N O ~ N + N + N O  
N O + O ~ N + O + O s  
NO + Ns ~- N + 0 + N. 
N O + O ~ N + O + O  
NO + N ,W- N +  O+ N 

NO+ NO ~_ N -{- O -+- NO 
O + N2~_ NO ~- N 
O+NO~N+O~ 
N + O ~_ NO+-]- e 

N2 + O~ ,~. NO + NO 

No+ + o~ a- o+  + No 

NO" -+- NO ,W-. N2 -{- 02+ 

O + O ~ O + + e  

No+ + ,~o ~ o ,  + N~ + 

NO§ + N., ~_ NO + N+ 

N-]-N ~ N + + e  

0 + + 0 ~ 0 § + 02 

NO* +~O ~ 0 § + NO 
NO + + N ~ N2 + O + 

N + + 0 ~ NO + N + 

O++N~N++O 

NO + 02 ~- NO + + o~" 

o~- + o~ ~ e + O2+ O~ 

O~- + N2 ~ e + O~ + N~ 

0~" + NO ~_ e + Os + NO 

0 - - , +  0 ~_ e +  0 ~ +  0 

0 - +  0-,,- e +  O +  0 
0 - +  0~+- e +  O +  02 

O - + N O + -  e +  0 +  NO 
O - + N 2 ~ e + O + N 2  

O ~ + e + - O - + O  

o~- + o= o~+ O- 

NO + O+- NO++ O - 
NO2 + N ~ NO + NO 
NO~ + O ~ NO + 02 
NO2+ e+-  O - +  NO 

NO2+ O~ ,W- N O +  0 + O~ 
NO.~ + N~ ~ NO + 0 + N~ 

NOa+ N0a ~ NO + NO +02 

0 
0 
0 
0 
0" 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

3 700 
"0 

43 t00 

0 

0 

0 

0 

0 

0 

0 

0 
0 

0 

0 

0 

0 

0 

0 

0 

0 
0 
0 
0 
0 

16 200 
0 

39 200 
23 600 

O, 
--970 
--970 

0 
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TABLE i (continued) 

49 
.50 
51 
52 
53 
54 
55 

56 

57 
58 
59 

60 

6t 

62 

63 

64 

65 

66 

~7 

68 

69 

70 

71 

72 

Reactions 

NO, q- 0 : ~  e + 0 + NO2 
Oa -~- N~ ~- O -+- 02 @ N~ 
Os q- O: ~- O + 02 -}- O~ 
Os + Oa ~- 0 -f- 02 + O~ 

N02 -+- O~ ~ Os -~" NO 
NO ~- O~ +- 03 + N 

O3 + 0 ~ O~ q- 02 
03 + e ~  0~" + 0 

N20 -t- 0 ~- N2 + 0~ 
N 2 0 q - 0 ~ N 0 @ N O  
N20 + 0 ~ N 0 ~ +  N 

N0 e "~- N~ 4-- N~0 -~ NO 

0 _]i N0~- ~-- O- @ N0i  

02 + N O ;  -,- o~- + NO2 

NO + N0_~ -*- NO + + N0~- 

N0~- + 0.2 "+- O- + NO + O~ 

NO~" + N2 +- O- + NO + N= 

NO{ + 0 ~  0 - +  N 0 +  0 

N0~" -1- NO ~- O- -}- NO 4- NO 

0 3  + O~-+- e + 03 .i~ 02 

0~- + O~ ~-- 0~- + 0 -t- O~ " 

0.,. + 02 + e +- 0~- + 0 

N0~- + 02 "~" 0~- q- NO 

NO + 03 ~ NO + + O~ 

a I 

c~ 

hf = aflOnfTlfe T 

n/ if 

,o 
,o 
o 
,o 

o 

o 
o 
,o 

Cb 

hb=abiOnbTlbe T 

t 926 15 
2 05 [5 
4,635 [5 
6,622 it 

8,428 tl 

6,3o t4 
3,63 ta 
6,6o [5 - 

| 
c f  % [ nb 

3,02 1t7 
1' 1,27 1t3 
t~" 1,486 ]13 
i" 5,436 13 
2, ~ 4,816 i i  

2,00 lO 
6,622 t2 

i,O0 14 

t: 9,00 11 
t; 2,19 14 
2: 4,80 12 

2,512 i4 

7,20 i4 

4,316 i4 

t,20 17 

l , ~  I,o 
7,40 15 

7,40 16 

7,40 16 

1,44 t8 

5,436 i6 

8,428 i3 

6,00 i2 

1,20 li7 

Ib Cb 

0 0 
0 --900 
0 --900 
0 --750 
0 i 200 
0 293 
0 19 600 

0 0 

0 53 200 
0 39 356 
0 0 

0 25 i64 

(a nozzle approximating a conical nozzle with an aperture half-angle 0). The results obtained 
by the method proposed above are marked by crosses in Figs. 1-4. The good agreement with 
the data of [3] is seen from Fig. i. Some disagreement in the NO and 02 concentrations for 
S/S, > 102 is explained by a difference in the kinetics of the reactions in the present work 
from what was adopted in [3]. 

Allowance for a more complete system of reactions leads to a pronounced difference in 
the distributions of concentrations only for S/S, > i0. Therefore, the simpler system of 
reactions can be used at small distances from the critical cross section of the nozzle (see 

[2-7]). 

Calculations were made with different pressure distributions in the region behind the 
cut of the body, where the equations for the pressure at the body and, from the explosion 
analogy, in the wake are usually "joined," and it was found that a change in the pressure 
distribution in the near wake has little influence on the results of calculations of the dis- 
tributions of the nonequilibrium parameters. Thus, a 25% change in the pressure at the dis- 
tance x' = x/R = i0 (R is the radius of the middle of the body) behind the body led to a change 
of less than 1% in the gas temperature and a change of less than 5% in the electron number 
density per unit volume. This justifies the use of asymptotic equations for the smoothed 
pressure profile in a region of the near wake of relatively small size. 

In Fig. 2 we present distributions of the molar-mass densities ~e of electrons as func- 
tions of the x coordinate (normalized to the radius), taken along the surface of a blunt cone 
with a blunting radius of curvature R = 15 cm and 8 = 6 ~ . Curve i corresponds to flow over 
a body with V~ = 4 km/sec at an altitude H = 15 km; 2) V~ = 5 km/sec and H = 30 km; 3) V~ = 
5 km/sec and H = 45 km (results of [7]). A comparison was also made with the data of [2, 
4, 6], from which it follows that the proposed method leads to good agreement between the 
distributions of the nonequilibrium parameters along the axis of a nozzle and over the surface 
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72 
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Fig. 4 

of a blunt body and the results of numerical calculations of [2-7] for x < i0. For larger 
distances there is a difference from the data of [2-7] in the distributions of nonequilib- 
rium concentrations. This is connected with the fact that during the expansion of the stream 
it cools and negative ions and triatomic molecules are formed, so that one must allow for 
a more complete system of reactions and components than in [2-7]. 

4. The present calculation method also enables us to determine the distributions of 
nonequilibrium parameters at the outer boundary of the viscous wake and the initial condi- 
tions in the wake behind a model in an aeroballistic experiment. 
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0 5 ,10 x 7 5  

Fig. 5 

In Figs. 3 and 4 we present the results of calculations of the nonequilibrium parameters 
of air at tile surfaces of spherically blunted models with a diameter of 0.5 cm and in the 
near wakes behind them for the characteristic conditions of an aeroballistic experiment (Too = 
290 K): 1-9 correspond to V= = 4 km/sec and p~ = 1.33"103 Pa; V~ = 5 km/sec and p~ = 1.33- 
103 Pa; V~ = 6 km/sec and p~ = 1.33"103 Pa; V~ = 4 km/sec and p~ = 5.33.103 Pa; V~ = 5 km/sec 
and p~ = 5.33-103 Pa; V~ = 6 km/sec and p~ = 5.33"103 Pa; V~ = 5 km/sec and p~ = 1.07"104 Pa; 
V~ = 5 km/sec and p~ = 1.07"104 Pa; V~ = 6 km/sec and p~ = 1.07"104 Pa. The pressure dis- 

tribution along the axis of symmetry was assigned from Eq. (1.5). The x' coordinate along 
the axis of symmetry was reckoned from the critical point of the body and was normalized to 
the blunting radius. The numerical solution in Figs. 3 and 4 is, strictly speaking, valid 
only up to the point of intersection of the inviscid stream tube with the boundary of the 
core of the turbulent viscous wake, which comprises several dozen times the diameter of the 
body. For estimates, however, the results for larger distances are given in Figs. 3 and 4. 

Along with the numerical solution presented above, it is important to obtain a simple 
analytical solution, under certain assumptions, for the electron density distribution in a 

stream tube. 

In [i, 9] it was shown that for nearly equilibrium flow one can introduce an effective 
constant index ~ef, which enables one to obtain a simple solution. For 1.5 -< r <- 15 we 
represent it approximately in the form of the functions [16] 

?et -- i 
v (r) [~l (r) g (M,)/elll/2, e i ?el ~ --'i-~ ( 4 . 1 )  

Vef- -1  

T (r) 7e~-{- l e~ 2 "r2(1-VeOg (M,),  
2Yet 

p (r) = ]/ei/[Vl (r) g (M,)]r-2~,: 
i 

= -- ex g tM,)l~l I, )1 ,: 

~2ef--1 

(r) = 1 - -  el 2 "r-2(~ewl)c-1 (M,) ,  

, ~,,ef + 2  / 

_ ,  ~ I , . , e t -1  g ( M , ) = ( e , M ~ + i _ e l ) l M 2 , ,  g (M,) (eiM2, + t -  ~,) l iv,, , 

A calculation from Eqs. (4.1) leads to a difference of 1% from the exact numerical results 
for the velocity profiles and of 8% for the temperature in the range of 1.5 ~ r ~ 15. For 
simplicity, we assume that electron recombination in the reaction e + NO + § N + 0 occurs from 
the critical point of the body along a stream tube. Then we write the equation for the molar- 
mass density Ye as 

d?e K~ ?~P2 ( 4 . 2 )  
pV dx = m, r 3 1 2 , Y ~ ( x = 0 ) = ? ~ , , ~  

where m, is the molecular weight; K0 = 1.8"1021 cma'K3/2/(mole'sec); ne, = ~e,P,/kT,; param- 
eters at the stagnation point are marked by an asterisk. 
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We introduce the dimensionless parameters 

v = v / v , ,  ~ = O/P, ,  x = x / R ,  -T = T / T , .  

In Eq. (4.2) we change to the r coordinate (we omit the asterisk): 

dx 
d? e K o "l'~P (r) f. (r) ] -~- -'~r': 3re (r  = t )  = "~e,. 

V dr - -=- -m ' - - .  [T(r)]a/2 ' 

The solution of Eq. (4.4) is reduced to the form 

( 4 . 3 )  

(4.4) 

{ 1 ; K~ Ve*P*n F (r) F (r) = p (r) f (r) dr 
Ye ( r )  = I - ] -  - ~ 3 / z  ', v (r)  IT (r)]  3/2 " (4.5) 

The correspondence between x and r is established through the relation [9] 

r2.= i + '~ J , 
(Yet -- ~) M2 , " 

Using (4.1), for r -> 2.5 (x -> 1.6) we obtain 

F (r) --- A (~'e0 + B (Tei) I (r), I (r) = t + 2t- -~-2 + - -  , 3y z 5y a (4.6) 

1--~,ef 
y = r t = V ~  - -  y* 

1--?el 

a 2 _-- el 2 ~ ( M , ) .  

For flow over a spherically blunted model, a comparison with exact calculations for Yef ~ 
1.2 gave A = -0.806 and B = 0.642. 

The results of exact calculations of 7e(X) can differ severalfold from calculations based 
on Eqs. (4.5) and (4.6) for x' = i. This difference is connected with the use of only one 
recombination reaction in the analytic solution (4.5), whereas a larger number of reactions 
with charged particles actually influence the electron density. Therefore, within the frame- 
work of one principal model recombination reaction, we introduce the effective value K0ef 
of the reaction rate constant, which allows for the influence of the remaining (neglected) 
reactions. A comparison with exact calculations for i0 & M~ ~ 20 and 1.33.10 ~ Pa 5 p~ ~ 1.33. 
104 Pa gives 

Koa  = ( - - ~ 8 6 M ~ + 2 6 , 5 8 ) ( - - O . O O 5 p ~  + i , i T ) . i 0 ~ ~  

The dependence 7e(X)/Te, for a sphere of R = 0.25 cm is constructed in Fig. 5, where i 
is the numerical results for M~ = 11.7 and p~ = 1.07.104 Pa; 2) M~ = 14.7 and p~ = 5.33.103 
Pa; 3) M~ = 17.6 and p~ = 1.07.104 Pa. The results of calculations from Eqs. (4.5) and (4.6) 
are plotted there for comparison; the good agreement is seen. 

5. Let us consider the formulation of new variational problems of nonequilibrium aero- 
dynamics in more detail. In the motion of models at hypersonic velocities, highly excited 
quantum states of atoms and molecules, as well as charged particles, are formed in the shock 
layer and the wake behind the body. The presence of charged particles (mainly electrons) 
and radiating components enables one to carry out shf diagnostics and optical measurements 
in the gas stream near a flying model in an aeroballistic experiment. The integral intensity 
of optical or shf signals in a recording is determined by the flow regime and the geometrical 
dimensions and shape of the body. In this connection we pose a problem: to find the shape 
of the body from the condition that a certain functional J, dependent on some concentration, 
be minimal for different isoperimetric conditions. 

Let the origin of coordinates be located at the critical point of the axisymmetric body, 
the OX axis be directed along its axis of symmetry, and the OY axis be perpendicular to the 
OX axis. The equation describing the shape of the body in these coordinates is y = y(x), 
with y(O) = O. 
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The following functionals J, dependent on the shape y = y(x) of the axisymmetric body, 
can be chosen in different problems: 

] = c,(x = L), ( 5 . 1 )  

where  c i  i s  t h e  mass  c o n c e n t r a t i o n  o f  t h e  i - t h  componen t ,  d e t e r m i n i n g  t h e  p r o c e s s  unde r  con-  
s i d e r a t i o n ;  L i s  t h e  l e n g t h  o f  t h e  body [ t h e  f u n c t i o n a l  ( 5 . 1 )  depends  on t h e  s h a p e  o f  t h e  
body in  a complex  way t h r o u g h  t h e  p r e s s u r e  d i s t r i b u t i o n  o v e r  i t s  s u r f a c e ] ;  

A~(L) 

J = 2~ ~I puciydz~ 
o 

( 5 . 2 )  

where J expresses the flux of the i-th component through the shock layer of thickness As; p 
and u are the gas density and velocity; z is the coordinate along the normal to the surface 
of the body [Eq. (5.2) determines the solution of the equations describing the flow in a vis- 
cous turbulent wake]; 

J = S71~ c~ds. (5.3) 
S 1 

Here ds is an element of the lateral surface of the body; S I is the area of the frontal part 
of the body; J expresses the average value of the i-th concentration over the surface of the 
body. The solutions of variational problems on the body with the minimum value of one of 
the functionals (5.1)-(5.3) are obtained for different combinations of the length, the radii 
of the nose and middle, the volume, and the lateral surface area of the body on the basis 
of the method developed above, jointly with the method of local variations. 

Determining the optimum shapes of bodies in the indicated sense enables one to reduce 
(or increase) the radiation intensity and the amount of charged particles near models and 
in the wakes behind them, which is important in recording the physical processes in aerobal- 
listic experiments. 

I0. 

[ i. 
12. 

i[3. 
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INTENSELY RADIATING, SUPERCEITICAL SHOCK WAVES 

I. V. Nemchinov, I. A. Trubetskaya, and V. V. Shuvalov UDC 533.6.011.72 

The quasisteady structure of strong, intensely radiating shock waves propagating at a 
velocity D in a gas with a density P0 and the laws of variation of their brightness tempera- 
tures Te with variation of D were investigated in [I, 2]. The role of emission is character- 
ized by the parameter q = qb/qh, where qb is the emission flux of a black body at the temper- 
ature Ts corresponding to the velocity D in accordance with the shock adiabat, qh is the 
hydrodynamic flux of energy through the shock wave front, with qb = cTs 4, while qh = (1/2)" 
p0Dus 2 (c is the Stefan-Boltzmann constant and Us is the gas velocity behind the shock wave 
front). Subcritical (in the terminology of [i, 2]) shock waves, i.e., those for which q < i, 
are usually used as emission sources [3]. 

Only the soft part of the radiation emitted by the gas behind the front travels to large 
distances from the front. The hard part of this radiation is absorbed immediately ahead of 
the front, forming a heated layer. In [1-3], the value 11 of the first ionization potential 
of the working gas is taken as the arbitrary boundary e I separating the spectrum into these 
parts. We note that, according to calculations [4, 5] and measurements [6, 7] of the total 
emission flux, e I is 1-2 eV lower than 11 owing to absorption in broadened lines in the heated 
layer. As the velocity D of the front and the parameter q increase, the maximum temperature 
T_ ahead of the wave front grows. Absorption also begins in the long-wavelength part of the 
spectrum. Only quanta emitted in the heated layer itself emerge. The brightness temperatures 
Te and the thermal-radiation fluxes qr at first follow Ts and qb and then, having reached 
maxima, decrease [1-7]. 

In subcritical shock waves the highest values of qr and Te can be obtained by using heli- 
um and neon, which have the highest values of 11, as the working gases. In neon, for example, 
according to calculations [4, 5] and measurements [6-8], they reach 9-10 eV and 200-400 MW/ 
cm 2 at velocities of 50-70 km/sec. Higher temperatures Ts can be attained when heavier gases 
are used. The equation of state for xenon [9], for example, can be approximated by the power 
function 

e = A T a 8  -~, ~ =p/pL~ (1 )  

w h e r e  e i s  t h e  i n t e r n a l  e n e r g y  p e r  u n i t  m a s s ,  k J / g ;  p and OL a r e  t h e  d e n s i t y  and s t a n d a r d  
d e n s i t y  o f  xenon  ( 5 . 8 9  mg/cm~);  A = 4 . 0 ;  a = 1 . 6 5 ;  ~ = 0 . 1 4  i n  t h e  t e m p e r a t u r e  r a n g e  T = 2-30  
eV. Hence ,  

q ~ u l , 2 1 ~ O , 0 8 5  ~ ~ * ~ - - 2  1 ,81�9  
T s = .  . . . .  0 , N = u , ~ I . 1 u  us o 0 �9 ( 2 )  

Here  Us i s  i n  k m / s e c ;  Ts i s  i n  eV; 60 = O0/PL. At  a v e l o c i t y  us  = 40 k m / s e c ,  a c c o r d i n g  t o  
( 2 ) ,  we o b t a i n  Ts = 30 eV f o r  60 = 1 and t h e  b a c k - b o d y  e m i s s i o n  f l u x  qb i s  88 GW/cm =. I n  
r e a l i t y ,  h o w e v e r ,  s h o c k  waves  a r e  s u p e r c r i t i c a l  s t a r t i n g  w i t h  Us = 19 k m / s e c  and Ts = 13 eV, 
w h i l e  t h e  maximum f l u x e s  q r  m a r e  a l r e a d y  r e a c h e d  f o r  s u b c r i t i c a l  waves  and ,  a c c o r d i n g  t o  [6 ,  
7] c o m p r i s e  15-20  MW/cm 2, c o r r e s p o n d i n g  t o  an e f f e c t i v e  t e m p e r a t u r e  Te = ( q r m / c )  1/4 = 3 . 0 - 3 . 5  
eV. Thus ,  s c r e e n i n g  o f  t h e  f r o n t  p r e v e n t s  a t t a i n i n g  h i g h  v e l o c i t i e s  and e f f e c t i v e  t e m p e r a -  
t u r e s  and o b t a i n i n g  l a r g e  f l u x e s  o f  r a d i a t i o n  e s c a p i n g  f rom t h e  f r o n t  " t o  i n f i n i t y . "  
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